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Motivation: Cells Compute

● No survival without computation!
– Finding food

– Avoiding predators

● How do they compute?
– Unusual computational paradigms.

– Proteins: do they work like electronic circuits? 

– Genes: what kind of software is that?

● Signaling networks
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● Signaling networks
– Clearly “information processing”

– They are “just chemistry”: molecule interactions

– But what are their principles and algorithms?

● Complex, higher-order interactions
– MAPKKK = MAP Kinase Kinase Kinase: 

that which operates on that which operates on that 
which operates on protein.

● General models of biological computation
– What are the appropriate ones?

2008-09-21 8

Ultrasensitivity in the mitogen-activated protein cascade, 
Chi-Ying F. Huang and James E. Ferrell, Jr., 1996, Proc. 
Natl. Acad. Sci. USA, 93, 10078-10083.
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Modeling Approach

● We believe that {petri nets, process algebra, term rewriting, 
multiagent systems} are {better, complementary} for modeling 
biological systems than {SBML, Kohn charts, chemical reactions, ODEs}.

● We take a paper from the literature (usually ODEs or chemical 
reactions) and “code it up” in e.g. Petri nets.

● How do we know that’s the “same system” ? How do we convince 
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● How do we know that’s the “same system” ? How do we convince 
mathematical biologists that we are doing the “right thing”?
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(Macro-) Molecules as 
(Interacting) Automata
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Process Algebra

● Reactive systems (living organisms, computer networks, operating systems, …)

– Math is based on entities that react/interact with their environment
(“processes”), not on functions from domains to codomains.

● Concurrent
– Events (reactions/interactions) happen concurrently and asynchronously, 

not sequentially like in function composition.

● Stochastic
– Or probabilistic, or nondeterministic, 

but is never about deterministic system evolution.

●

[Hoare, Milner, Pnueli, etc.]
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but is never about deterministic system evolution.

● Stateful
– Each concurrent activity (“process”) maintains its own local state,

as opposed to stateless functions from inputs to outputs.

● Discrete
– Evolution through discrete transitions between discrete states,

not incremental changes of continuous quantities.

● Kinetics of interaction
– An “interaction” is anything that moves a system from one state to another.

2008-09-21 12



Interacting Automata

?a

A1

B1

!a

B2

@s

A1 is a state

a is a channel i.e. a named 
interaction interface
(e.g. a surface patch)

?,! indicate any complementarity of 
interaction (e.g. charge)

?a, !a indicate complementary actions, 

Current State

Interaction

Transition

Decay

Legend
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B3

@s ?a, !a indicate complementary actions, 

@r, @s are rates

Kinetic laws:



Interacting Automata

?a
B1

!a

B2

@s

@r

A1 is a state

a is a channel i.e. a named 
interaction interface
(e.g. a surface patch)

?,! indicate any complementarity of 
interaction (e.g. charge, shape)

?a, !a indicate complementary actions, 

A1Current State

Interaction

Transition

Decay

Legend
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B3

@s ?a, !a indicate complementary actions, 
joined by an interaction arrow

@r, @s are rates

Kinetic laws:
Two complementary 
actions may result in 
an interaction.



Interacting Automata

?a
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@s

A1

A1 is a state

a is a channel i.e. a named 
interaction interface
(e.g. a surface patch)

?,! indicate any complementarity of 
interaction (e.g. charge)

?a, !a indicate complementary actions, 

Current State
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B3

@s

Kinetic laws:

?a, !a indicate complementary actions, 
joined by an interaction arrow

@r, @s are rates

Two complementary 
actions may result in 
an interaction.

A decay may happen
spontaneously.



Interacting Automata

τ@λ1
τ@λ2

τ@λ3

τ@λ5

@r1

@r2

@r3

?a !a

?b

!b!c

?c

A1

A2

A3

B1

B2B3

C1 C2

new a@r1

new b@r2

new c@r3

A1 = ?a; A2

A2 = !c; A3

A3 = τ@λ5; A1

B = τ@λ ; B + !a; B

Communication 
channels

A
utom

ata
The equivalent process algebra model
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τ@λ4

?c

C3

B1 = τ@λ2; B2 + !a; B3

B2 = τ@λ1; B1

B3 = ?b; B2

C1 = !b; C2 + ?c; C3

C2 = τ@λ3; C1

C3 = τ@λ4; C2

A1 | B1 | C1

A
utom

ata

The system and 
initial state

Current State

Interaction
Transition
Delay

Interactions have 
rates. Actions DO 
NOT have rates.



Interactions in a Population

!a

A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b

Suppose this is the 
next interaction

(stochastically chosen)

L
u
c
a
 C

a
rd

e
ll
i

2008-09-21 17

A

B

!a

?a ?b

!b

!b !b

A

B

!a

?a ?b

!b
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Interactions in a Population (2)
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Suppose this is the 
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!b
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!a

?a ?b

!b

!b

All-B stable 
population

Nondeterministic 
population behavior

(“multistability”)



CTMC Semantics

A

!a

?a ?b

A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b

BA

r
CTMC
(homogeneous) Continuous Time 
Markov Chain
- directed graph with no self loops
- nodes are system states 
- arcs have transition rates

Probability of holding in state A:

Pr(HA>t) = e-rt

in general, Pr(HA>t) = e-Rt where R is 
the sum of all the exit rates from A
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B

?a ?b

!b

{2A,1B}
{3A}

{1A,2B}
{3B}

2ra

2rb

2ra

2rb

CTMC



Can add a new component 
without changing the old 
ones (if their interface

remains fixed).

r: A + B →k1 C + D
s: C + D →k2 A + B

Reactions vs. Components

A B

r

Reaction
oriented

1 line per 
reaction

Does A 
become 
C or D?

A B !rk1 ?rk1?sk2 !sk2Reaction
oriented

Says what “A” does. Says what “A” is.
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A  =  !rk1; C
C  =  ?sk2; A

B  =  ?rk1; D
D  =  !sk2; B

C D
rk1

Ιντεραχτιον
οριεντεδ

The same “state space”

Interaction
oriented

reaction

1 line per 
component A 

becomes 
C not D!

C D
sk2

CTMC



Groupies and Celebrities
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Groupies and Celebrities

Celebrity
(does not want to be like somebody else)

directive sample 1.0 1000

directive plot A(); B()

new a@1.0:chan()

new b@1.0:chan()

let A() = do !a; A() or ?a; B()

and B() = do !b; B() or ?b; A()

run 100 of (A() | B())

A

B

!a

?b

!b

?a

a@1.0

b@1.0
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Stable because as soon as a A finds itself in the majority, it is more likely to 
find somebody in the same state, and hence change, so the majority is weakened.

A stochastic collective of celebrities:
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Groupies and Celebrities

Groupie
(wants to be like somebody different)

directive sample 1.0 1000

directive plot A(); B()

new a@1.0:chan()

new b@1.0:chan()

let A() = do !a; A() or ?b; B()

and B() = do !b; B() or ?a; A()

run 100 of (A() | B())

A

B

!a

?a ?b

!b

a@1.0

b@1.0
A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b
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always 
eventually 
deadlock

Unstable because within an A majority, an A has difficulty finding a B to 
emulate, but the few B’s have plenty of A’s to emulate, so the majority may 
switch to B. Leads to deadlock when everybody is in the same state and there is 
nobody different to emulate.

A stochastic collective of groupies:
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directive sample 10.0

directive plot Ag(); Bg(); Ac(); Bc()

new a@1.0:chan()

new b@1.0:chan()

let Ac() = do !a; Ac() or ?a; Bc()

and Bc() = do !b; Bc() or ?b; Ac()

let Ag() = do !a; Ag() or ?b; Bg()

and Bg() = do !b; Bg() or ?a; Ag()

run 1 of Ac() 

Both Together

A way to break the deadlocks: Groupies with just a few Celebrities 

A few
Celebrities

Many
Groupies ?a

!a

?b

!a

?a ?b

Ac

Bc

Ag

Bg
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run 1 of Ac() 

run 100 of (Ag() | Bg())

A tiny bit of 
“noise” can make a 
huge difference

!b!b
never

deadlock
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Ga() Gb()

Hysteric Groupies

directive sample 10.0 1000

directive plot Ga(); Gb()

new a@1.0:chan()

new b@1.0:chan()

let Ga() = do !a; Ga() or ?b; ?b; Gb()

and Gb() = do !b; Gb() or ?a; ?a; Ga()

let Da() = !a; Da()

and Db() = !b; Db()

run 100 of (Ga() | Gb())

run   1 of (Da() | Db())

We can get more regular behavior from groupies if they “need more 
convincing”, or “hysteresis” (history-dependence), to switch states. 

(With doping to 

a “solid threshold” to observe switching

A

B
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?b
?b

!a

!b !a !b
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(With doping to 
break deadlocks)
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A
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!a !b

directive sample 10.0 1000

directive plot Ga(); Gb()

new a@1.0:chan()

new b@1.0:chan()

let Ga() = do !a; Ga() or ?b; ?b; ?b; Gb()

and Gb() = do !b; Gb() or ?a; ?a; ?a; Ga()

let Da() = !a; Da()

and Db() = !b; Db()

run 100 of (Ga() | Gb())

run   1 of (Da() | Db())
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Gb()

N.B.: It will not oscillate 
without doping (noise)

“regular” 
oscillation



Some Devices

?a

E

S

!a
E’

P

@1.0

@1.0

1000×S, 1×E

!b

?a

bLo

bHi

!c

cLo

cHi

!a

aHi

?a

?b

?b

100×aHi, 1000×bLo, 1000×cLo, rates=1.0

Linear Pump

Ultrasensitive Switch

Cascade Amplifier

Symmetric Wave Generator
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!b

S P
?b

?a

@1.0

@1.0

100×F, 0..200×E A

!b

B
?b

!c

C
?c

Symmetric Wave Generator
E E’

@1.0

F’ F
@1.0

!a



More Devices

A B

!a

?c
?a

!b?b

C

!c

@1.0

@1.0

@1.0

900xA, 500xB, 100xC

Oscillator

Neg(a,b) !b
?a

Inh(a,b)

τ(η)

Tr(b)

τ(δ)

τ(ε)

Repressilator (1 of 3 similar gates)

b = not a c = a or b c = a and b c = a imply b c = a xor b
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Inputs:
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!c

?b

?a

!b!a
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(signal 
restoring)
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Semantics of 
Collective Behavior 
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The Two Semantic Sides of Chemistry

=

Continuous
Chemistry

Discrete

Process
Algebra

ODE ODE

Continuous-state Semantics 
(Mass Action Kinetics)

Nondeterministic 

Semantics
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=

Discrete
Chemistry

CTMC CTMC

Discrete-state Semantics

(Chemical Master Equation)

Stochastic

Semantics

These diagrams commute via appropriate maps.

L. Cardelli: “On Process Rate Semantics” (TCS)

L. Cardelli: “A Process Algebra Master Equation” (QEST’07)



Quantitative Process Semantics

=

Continuous
Chemistry

Discrete

Process
Algebra

ODE ODE

Continuous-state Semantics 
(Mass Action Kinetics)

Nondeterministic 

Semantics

d[X]/dt = (Σ(Y∈E) AccrE(Y,X)⋅[Y]) - DeplE(X)⋅[X] for all X∈E

Process Rate Equation

Defined over the 
syntax of processes

Accretion Depletion
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=

Discrete
Chemistry

CTMC CTMC

Discrete-state Semantics

(Chemical Master Equation)

Stochastic

Semantics

∂pr(p,t)/∂t   =   Σι∈ℑ aι(p-vι)⋅pr(p-vι,t) - aι(p)⋅pr(p,t) for all p∈States(E)

Process Master Equation

syntax of processes

Interactions Propensity



From CGF to Chemistry
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Chemical Reactions

A →r B1 +…+ Bn (n≥0)

A1 + A2 →r B1 +…+ Bn (n≥0)

A + A →r B1 +…+ Bn (n≥0)

Unary Reaction d[A]/dt = -r[A]

Hetero Reaction d[Ai]/dt = -r[A1][A2]

Homeo Reaction d[A]/dt = -2r[A]2

No other reactions!

Exponential Decay 

Mass Action Law

Mass Action Law

Chapter IV: Chemical Kinetics    
[David A. Reckhow , CEE 572 Course]

...  reactions may be either elementary or non-
elementary. Elementary reactions are those 
reactions that occur exactly as they are 

THE COLLISION THEORY OF 
REACTION RATES
www.chemguide.co.uk

The chances of all this happening if 
your reaction needed a collision 

(assuming A≠Bi≠Aj for all i,j) 

L
u
c
a
 C

a
rd

e
ll
i

Trimolecular reactions:

A + B + C →r D

the measured “r” is an (imperfect)
aggregate of e.g.:

A + B ↔ AB

AB + C → D

reactions that occur exactly as they are 
written, without any intermediate steps. 
These reactions almost always involve just one 
or two reactants. ... Non-elementary reactions
involve a series of two or more elementary 
reactions. Many complex environmental 
reactions are non-elementary. In general, 
reactions with an overall reaction order 
greater than two, or reactions with some non-
integer reaction order are non-elementary. 

your reaction needed a collision 
involving more than 2 particles are 
remote. All three (or more) particles 
would have to arrive at exactly the 
same point in space at the same time, 
with everything lined up exactly right, 
and having enough energy to react. 
That's not likely to happen very often!

Enzymatic reactions:

S   E  r P

the “r” is given by Michaelis-Menten
(approximated steady-state) laws:

E + S ↔ ES

ES → P + E



Chemical Ground Form (CGF)

E ::= 0  ⋮ X=M, E    Reagents

M ::= 0  ⋮ π;P ⊕ M   Molecules

P ::= 0  ⋮ X | P       Solutions

π ::= τ(r) ⋮ ?a(r) ⋮ !a(r) Actions (delay, input, output) 

CGF ::= E,P Reagents plus Initial Conditions

⊕ is stochastic choice (vs. + for chemical reactions)
0 is the null solution (P|0 = 0|P = P) 

and null molecule (M⊕0 = 0⊕M = M)

(To translate chemistry to processes we 
need a bit more than interacting 
automata: we may have “+” on the right 

A stochastic 
subset of CCS 

(no values, no restriction)
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A

B

!a

?a ?b

!b

A = !a;A ⊕ ?b;B

B = !b;B ⊕ ?a;A

A|A|B|B

Ex: Interacting Automata 
(= finite-control CGFs: they use “|” only in initial conditions):

Initial 
conditions: 
2A and 2B

Automaton in state A

Automaton in state B

and null molecule (M⊕0 = 0⊕M = M)
Each X in E is a distinct species
Each name a is assigned a fixed rate r: a(r)

need a bit more than interacting 
automata: we may have “+” on the right 
of →, that is we may need “|” after π.)



From CGF to Chemistry (by example)

!a(r)

?a ?a

A

τ

L
u
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a
 C

a
rd

e
ll
i

?a(r) ?a(r)

B

τ(s)

A = !a(r);A ⊕ ?a(r);B

B = ?a(r);A ⊕ τ(s);A



From CGF to Chemistry (by example)

A

B →s A

A  →r A’A’A
τ(ρ)

!a(r)

?a ?aτ
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B

A = !a;A ⊕ ?a;B

B = ?a;A ⊕
τ(s);A

?a(r) ?a(r)τ(s)



From CGF to Chemistry (by example)

B →s A

A+B →r A+A

A

!a(r)
A

B

A’

B’
?a(r)

A+B →r A’+B’
!a(r)

?a ?aτ
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A+B →r A+A

B

A = !a;A ⊕ ?a;B

B = ?a;A ⊕
τ(s);A

?a(r) ?a(r)τ(s)



From CGF to Chemistry (by example)

B →s A

A+B →r A+A

A

?a(r)
A

A’ A”

!a(r)
A+A →2r A’+A”

!a(r)

?a ?aτ

L
u
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A+B →r A+A

A+A →2r A+B

B

A = !a;A ⊕ ?a;B

B = ?a;A ⊕
τ(s);A

?a(r) ?a(r)τ(s)

Double rate for 
homeo reactions



From CGF to Chemistry (by example)

Interacting
Automata

Discrete 
Chemistry

A  � r A’A’A
@r

=

Continuous
Chemistry

Process
Algebra

ODE ODE
#A0A | A | ... | A

initial states initial quantities

L
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?a
A

B

A’

B’
!a A+B � r A’+B’@r

?a
A

A’ A”

!a
A+A � 2r A’+A”

@r

=

Discrete
Chemistry

Algebra

CTMC CTMC



From CGF to Chemistry: Ch(E)

Chemical reactions for E,P: (N.B.: <...> are reaction tags to obtain multiplicity of reactions, 

and P is P with all the | changed to +)

E.X.i ≝   the i-th 
⊕-summand of the 
molecule M 
associated with 
the X reagent of E

E ::= 0  ⋮ X=M, E    Reagents

M ::= 0  ⋮ π;P ⊕ M   Molecules

P ::= 0  ⋮ X | P       Solutions

π ::= τ(r) ⋮ ?a(r) ⋮ !a(r) Interactions (delay, input, output)

CGF ::= E,P Reagents plus Initial Conditions

L
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a
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i
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and P is P with all the | changed to +)

Ch(E) :=

{(<X.i>: X →r P) s.t. E.X.i = τ(r);P} ∪

{(<X.i,Y.j>: X + Y →r P + Q) s.t. X≠Y, E.X.i = ?a(r);P, E.Y.j = !a(r);Q} ∪

{(<X.i,X.j>: X + X →2r P + Q) s.t. E.X.i = ?a(r);P, E.X.j = !a(r);Q)〉 ∈ E}

Initial conditions for P:

Ch(P) := P



From Chemistry to CGF
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From Chemistry to CGF (by example)

x:   B →s A

b:   A+B →r A+A

c:   A+A →2r A+B

x(s) b(r) c(r)

A

B
Half-rate for 

homeo reactions

Unique reaction 
names

Species

Reactions  names

L
u
c
a
 C

a
rd

e
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i



From Chemistry to CGF (by example)

x:   B →s A

b:   A+B →r A+A

c:   A+A →2r A+B

1: Fill the matrix by columns:

Degradation reaction vi: X →ki Pi

add t;P to <X,v >. 

x(s) b(r) c(r)

A

B τ;A

L
u
c
a
 C

a
rd

e
ll
i

add t;Pi to <X,vii>. 



From FSRN to CGF (by example)

x:   B →s A

b:   A+B →r A+A

c:   A+A →2r A+B

x(s) b(r) c(r)

A ?;A|A

B τ;A !;0

1: Fill the matrix by columns:

Degradation reaction vi: X →ki Pi

add t;P to <X,v >. 

L
u
c
a
 C

a
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i

add t;Pi to <X,vii>. 

Hetero reaction vi: X+Y →ki Pi

add ?;Pi to <X,vi> and !;0 to <Y,vi>



From FSRN to CGF (by example)

x:   B →s A

b:   A+B →r A+A

c:   A+A →2r A+B

x(s) b(r) c(r)

A ?;A|A
?;A|B 
!;0

B τ;A !;0

1: Fill the matrix by columns:

Degradation reaction vi: X →ki Pi

add t;P to <X,v >. 

L
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a
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add t;Pi to <X,vii>. 

Hetero reaction vi: X+Y →ki Pi

add ?;Pi to <X,vi> and !;0 to <Y,vi>

Homeo reaction vi: X+X →ki Pi

add ?;Pi and !;0 to <X,vi>



From FSRN to CGF (by example)

x:   B →s A

b:   A+B →r A+A

c:   A+A →2r A+B

1: Fill the matrix by columns:

Degradation reaction vi: X →ki Pi

add t;P to <X,v >. A

x(s) b(r) c(r)

A ?;A|A
?;A|B 
!;0

B τ;A !;0

!c

?b(r)

L
u
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a
 C

a
rd

e
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add t;Pi to <X,vii>. 

Hetero reaction vi: X+Y →ki Pi

add ?;Pi to <X,vi> and !;0 to <Y,vi>

Homeo reaction vi: X+X →ki Pi

add ?;Pi and !;0 to <X,vi>

2: Read the result by rows:

A = ?b(r);(A|A)  ⊕ ?c(r);(A|B)  ⊕ !c(r);0   

B = t(s);A  ⊕ !b(r);0 

!b(r)

?c(r

)

B

A

τ(s)

!c(r)



From FSRN to CGF (by example)

x:   B →s A

b:   A+B →r A+A

c:   A+A →2r A+B

1: Fill the matrix by columns:

Degradation reaction vi: X →ki Pi

add t;P to <X,v >. A

x(s) b(r) c(r)

A ?;A
?;A|B 
!;0

B τ;A !;A

?b(r)

!c

L
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add t;Pi to <X,vii>. 

Hetero reaction vi: X+Y →ki Pi

add ?;Pi to <X,vi> and !;0 to <Y,vi>

Homeo reaction vi: X+X →ki Pi

add ?;Pi and !;0 to <X,vi>

2: Read the result by rows:

A = ?b(r);A  ⊕ ?c(r);(A|B)  ⊕ !c(r);0   

B = t(s);A  ⊕ !b(r);A 

B

A

!b(r)

?c(r

)
τ(s)

!c(r)



From FSRN to CGF (by example)

x:   B →s A

b:   A+B →r A+A

c:   A+A →2r A+B

1: Fill the matrix by columns:

Degradation reaction vi: X →ki Pi

add t;P to <X,v >. A

x(s) b(r) c(r)

A ?;A
?;B

!;A

B τ;A !;A

?b(r)

!c

L
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add t;Pi to <X,vii>. 

Hetero reaction vi: X+Y →ki Pi

add ?;Pi to <X,vi> and !;0 to <Y,vi>

Homeo reaction vi: X+X →ki Pi

add ?;Pi and !;0 to <X,vi>

2: Read the result by rows:

A = ?b(r);A  ⊕ ?c(r);B  ⊕ !c(r);A   

B = t(s);A  ⊕ !b(r);A 

B

A

!b(r)

?c(r

)
τ(s)

!c(r)



From Chemistry to CGF: Pi(C)

Pi(C)  = {(X = ⊕((v: X →k P)∈C) of (τ(k);P) ⊕

⊕((v: X+Y →k P)∈C and Y≠X) of (?v(k);P) ⊕

⊕((v: Y+X →k P)∈C and Y≠X) of (!v(k);0) ⊕

((v: X+X →k P) C) of (?v ;P !v ;0) )

From uniquely-labeled (v:) chemical reactions C to a CGF Pi(C):

v: X →
r Y1 +…+ Yn + 0 Unary Reaction

v: X1 + X2 →
r Y1 +…+ Yn + 0 Binary Reaction
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⊕((v: X+X →k P)∈C) of (?v(k/2);P ⊕ !v(k/2);0) )

s.t. X is a species in C} 

=

=

Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

CTMC

ODE ODE

CTMC



Discrete-State
Semantics

=
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=

=

Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

CTMC

ODE ODE

CTMC



Discrete Semantics of Reactions

=

Continuous
Chemistry

Process
Algebra

ODE ODE

A+B →r A+A

A+B →r B+B

A+B+B

Syntax:
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i
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=

Discrete
Chemistry

Algebra

CTMC CTMC

{2A,1B}
{3A}

{1A,2B}
{3B}

2ra

2rb

2ra

2rb

CTMC

Semantics:



Discrete Semantics of Reagents

=

Continuous
Chemistry

Process
Algebra

ODE ODE

A

!a

?a ?b

A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b

Syntax:
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=

Discrete
Chemistry

Algebra

CTMC CTMC

B

?a ?b

!b

{2A,1B}
{3A}

{1A,2B}
{3B}

2ra

2rb

2ra

2rb

CTMC

Semantics:



Discrete State Equivalence

● Def: � is equivalent CTMC’s (isomorphic graphs with same rates).

● Thm: E � Ch(E)

● Thm: C � Pi(C)

=

=

Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

ODE ODE

=

=

Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

ODE ODE
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● For each E there is an E’ � E that is detangled (E’ = Pi(Ch(E)))

● For each E in automata form there is an an E’ � E that is detangled 
and in automata form (E’ = Detangle(E)).
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=CTMC CTMC =CTMC CTMC



Interacting Automata = Discrete Chemistry

This is enough to establish that the process 
algebra is really faithful to the chemistry. 

But CTMC are not the “ultimate semantics” 
because there are still questions of when two 
different CTMCs are actually equivalent (e.g. 
“lumping”).

=

=

Continuous
Chemistry

Process
Algebra

ODE ODE

Discrete
Chemistry
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The “ultimate semantics” of chemistry is the 
Chemical Master Equation (derivable from the 
Chapman-Kolmogorov equation of the CTMC).

=CTMC CTMC



Entangled vs Detangled

A

!a

?a
B

C

B’

C’
?a

a: A+B →r A+B’

a: A+C →r A+C’

(a@r)

?b
B

C

B’

C’
?c

b: A+B →r A+B’

c: A+C →r A+C’!b !c
A

(b@r)

(c@r)

A = !a;A

B = ?a;B’

C = ?a;C’

B’ = 0

C’ = 0

A = !b;A ⊕ !c;A

B = ?b;B’

C = ?c;C’

B’ = 0

C’ = 0

Entangled
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Detangled automata are in simple 
correspondence with chemistry.
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Entangled: Two reactions 
on one channel

Detangled: Two reactions 
on two separate channels

We need a semantics of automata that identifies 
automata that have the “same chemistry”.

No process algebra equivalence is like this!  

Entangled automata lead to more 
compact models than in chemistry.



From Discrete to 
Continuous Chemistry
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The “Type System” of Chemistry
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For a given volume of solution V, the volumetric factor γ of dimension M-1 is:

γ : M-1 =  NAV where NA:mol-1 and V:L

#X / γ : M =  concentration of X molecules

γ•[X] : 1 =  total number of X molecules (rounded to an integer).

A continuous chemical system (C,V) is a system of chemical reactions C 
plus a vector of initial concentrations VX: M, one for each species X.

The rates of unary reactions have dimension s-1.

The rates of binary reactions have dimension M-1s-1.
(because in both cases the rhs of an ODE should have dimension M·s-1).



The Gillespie Conversion

Discrete 
Chemistry

Continuous 
Chemistry

A  � r A’ A  →k A’ with k = r

γ = NAV

#A0 [A]0 with [A]0 = #A0/γ

initial quantities initial concentrations

Think γ = 1
i.e. V = 1/NA

V = interaction volume

NA = Avogadro’s number

:s-1

:M-1

M = mol·L-1

molarity (concentration)
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A+B � r A’+B’ A+B →k A’+B’ with k = rγ

A+A � r A’+A” A+A →k A’+A” with k = rγ/2

=

=

Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

CTMC

ODE ODE

CTMC

:M-1s-1

:M-1s-1



Contγγγγ and Discγγγγ
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Continuous
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Discrete
Chemistry

Process
Algebra

CTMC

ODE ODE

CTMC

Chγ := Contγ o Ch



Continuous-State
Semantics

(summary)

=
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=

=

Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

CTMC

ODE ODE

CTMC



Same Semantics

B →s A

A+B →r A+A

A+A →2r A+B

!a

?a ?a

B

A

(a@r)

τ@s

!a

?a ?b

!b

A

B
(a@r)

(b@r)

τ@s

Could chemistry itself be that semantics?

No: different sets of reactions can have the same behavior!  
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(b@r)

A = !a;A ⊕ !b;A ⊕ ?b;B

B = ?a;A ⊕ τ(s);A

A = !a;A ⊕ ?a;B

B = ?a;A ⊕ τ(s);A

B →s A

A+B →r A+A

A+A →r B+B

?a ?b

(a@r)

(b@r/2)

A

B

!b

!a

τ@s

A = !a;A ⊕ !b;B ⊕ ?b;B

B = ?a;A ⊕ τ(s);A

Different reactions, 
but they induce the 

same ODEs



From Reactions to ODEs (Law of Mass Action)

N v1 v2 v3 v4

A -1 -1

B -1 1

C 2 -1 -1

D 1

Write the 
coefficients by 
columns

reactions

sp
ec

ie
s

v1: A+B →k1 C+C

v2: A+C →k2 D

v3: C →k3 E+F

v4: F+F →k4 B

Stoichiometric 
Matrix

A

B C

D

C
k1

k2

=

=

Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

CTMC

ODE ODE

CTMCStoichiometric
matrix

Quantity 
changes

L
u
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a
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D 1

E 1

F 1 -2

d[A]/dt = -l1 - l2
d[B]/dt = -l1 + l4
d[C]/dt = 2l1 - l2 - l3
d[D]/dt = l2
d[E]/dt = l3
d[F]/dt = l3 - 2l4

Read the concentration changes 
from the rows

X: chemical species

[-]: quantity of molecules

l: rate laws

k: kinetic parameters

N: stoichiometric matrix

X

sp
ec

ie
s

l
l1 k1[A][B]

l2 k2[A][C]
l3 k3[C]
l4 k4[F]2

d[X]/dt = N⋅⋅⋅⋅l

Set a rate law for each reaction 
(Degradation/Hetero/Homeo)

E.g. d[A]/dt = 
-k1[A][B] - k2[A][C]

B C

EFk4

k3

matrix

Rate laws



Continuous State Equivalence

● Def: ≈ is equivalence of polynomials over the field of reals.

● Thm: E ≈ Cont(Ch(E))

● Thm: Cont(C) ≈ Pi(C)

=

=

Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

ODE ODE

=

=

Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

ODE ODE

Law of Mass Action

L
u
c
a
 C

a
rd

e
ll
i

● For each E there is an E’ ≈ E that is detangled (E’ = Pi(Ch(E)))

● For each E in automata form there is an an E’ ≈ E that is detangled and 
in automata form (E’ = Detangle(E)).
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=CTMC CTMC =CTMC CTMCGillespie Conversion



GMA ≠ CME

=

Continuous

ODE ODE Semantics #1
Continuous state space
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=

Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

CTMC CTMC

Syntax

Semantics #2
Discrete state space



A+A →→→→2r A      =? A+A →→→→r 0

A+A → rγ/2 0
[A]0=2/γ

A+A →r 0

d[A]/dt = -rγ[A]2

A+A →rγ A
[A]0=2/γ

A+A →2r A

d[A]/dt = -rγ[A]2

2*reaction rate rγ/2 because 
2*A are lost in reaction.

1*reaction rate rγ because 
1*A is lost in reaction.

Gillespie conversion

Law of Mass Action
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A+A →r 0
A+A

A+A 0

r

A+A →2r A
A+A

A+A A

2r

Gillespie conversion

CTMC

(For conservation of mass, consider instead    A+A →2r A+B      vs. A+A →r B+B)



Continuous vs. Discrete Groupies

M
a
tl

a
b

(all with doping)
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2000×A , 0×B , 1×Ad , 1×Bd , r = 1.0

Groupe ODEs - Groupies.mat

[0:0.001:5.0] r=1.0 k=1.0

A dx1/dt = -(x1-x2),   2000.0

B dx2/dt = (x1-x2),   0.0

Groupe ODEs - Groupies Hysteric 1.mat

[0:0.001:5.0] r=1.0 k=1.0

A dx1/dt=x1*x4-x3*x1-x1+x4, 2000.0

A’ dx2/dt=x3*x1-x3*x2+x1-x2, 0.0

B dx3/dt=x3*x2-x1*x3-x3+x2, 0.0

B’ dx4/dt=x1*x3-x1*x4+x3-x4, 0.0

Groupe ODEs - Groupies Hysteric 2.mat

[0:0.001:5.0] r=1.0 k=1.0

A  dx1/dt=x1*x6-x3*x1-x1+x6, 2000.0

A’  dx2/dt=x3*x1-x3*x2+x1-x2, 0.0

A” dx5/dt=x3*x2-x3*x5+x2-x5, 0.0

B   dx3/dt=x3*x5-x1*x3-x3+x5, 0.0

B’  dx4/dt=x1*x3-x1*x4+x3-x4, 0.0

B”  dx6/dt=x1*x4-x1*x6+x4-x6, 0.0

directive sample 5.0 1000
directive plot B(); A()

new a@1.0:chan()

new b@1.0:chan()

let A() = do !a; A() or ?b; ?b; B()

and B() = do !b; B() or ?a; ?a; A()

let Ad() = !a; Ad()

and Bd() = !b; Bd()

run 2000 of A()

run 1 of (Ad() | Bd())

directive sample 5.0 1000

directive plot B(); A()

new a@1.0:chan()

new b@1.0:chan()

let A() = do !a; A() or ?b; ?b; ?b; B()

and B() = do !b; B() or ?a; ?a; ?a; A()

let Ad() = !a; Ad()

and Bd() = !b; Bd()

run  2000 of A() 

run 1 of (Ad() | Bd())

directive sample 5.0 1000

directive plot B(); A()

new a@1.0:chan()

new b@1.0:chan()

let A() = do !a; A() or ?b; B()

and B() = do !b; B() or ?a; A()

let Ad() = !a; Ad()

and Bd() = !b; Bd()

run 2000 of A() 

run 1 of (Ad() | Bd())



Scientific Predictions
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bAfter a while, all 4 

states are almost 
equally occupied.
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The 4 states are 
almost never 
equally occupied.



Discrete Analysis 
Techniques
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The Program vs. the State Space

Finite

The “program”:

A

C

B

D

!rk1 ?rk
1

?sk2 !sk2

Event
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Potentially infinite

The “state space”:

State

Event instance



● Run “the program” through a walk in 
states space.

● Basic stochastic algorithm: Gillespie
– Exact (i.e. based on physics) stochastic 

simulation of chemical kinetics.
– Can compute concentrations and reaction 

times for biochemical networks.

● Stochastic Process Algebras

Simulation
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● Stochastic Process Algebras
– Now many [BioSPi, SPiM, BioPEPA, 

BetaBinders, …]

● Hybrid approaches
● Continuous + discrete/stochastic 

switching
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Control Flow Analysis

● Who may call who?
● Overapproximation of behavior used to 

answer questions about what “cannot 
happen”.

What event may (or 
may not) have been 
involved in reaching 

this state?

L
u
c
a
 C

a
rd

e
ll
i

2008-09-21 73



Causality Analysis

● What event caused what other event or 
state to happen?
● E.g.: if in all possible executions one 

event always precedes another.

● Need a different level of representation 
(the “event space”)
● Petri Nets
● Event Structures

What event “caused” 
this state?
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● Event Structures



Abstract Interpretation

May now be finite!

● Precisely relating abstract views to more
concrete views of the system
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Modelchecking

● Asking questions (in Temporal Logic) 
about structure of a (finite) state 
space.

● Various flavors of modelchecking:
– Temporal

●About paths through state space

– Quantitative

Is this state a 
necessary checkpoint 
to reach this state?
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– Quantitative
●About quantitative measures of states

– Probabilistyc/Stochastic
●About probabilities of reaching states.
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Bisimulation

● Are two programs generating the same 
state space?
– E.g.: Is a compact description of a 

system equivalent to a more detailed one 
in all possible environments?

≈
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Conclusions
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Conclusions

● Process Algebra
– An extension of automata theory to populations of interacting automata

– Modeling the behavior of individuals in an arbitrary environment

– Compositionality (combining models by juxtaposition)

● Connections between modeling approaches
– Connecting the discrete/concurrent/stochastic/molecular approach

– to the continuous/sequential/deterministic/population approach

● Connecting syntax with semantics

=

=

Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

CTMC

ODE ODE

CTMC
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● Connecting syntax with semantics
– Syntax = model presentation (equations/programs/diagrams/blobs etc.)

– Semantics = state space (generated by the syntax)

● Ultimately, connections between analysis techniques
– We need (and sometimes have) good semantic techniques to analyze state 

spaces (e.g. calculus, but also increasingly modelchecking)

– But we need equally good syntactic techniques to structure complex models 
(e.g. compositionality) and analyze them (e.g. process algebra)

● A bright future for Computer Science and Logic in modern Biology
– Biology needs good analysis techniques for discrete systems analysis

(modal logics, modelchecking, causality analysis, abstract interpretation, …)
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